Reg. No.:

Name :

III Semester M.Sc. Degree (CBSS – Reg./Suppl./imp.)
Examination, October 2021
(2018 Admission Onwards)
MATHEMATICS
MAT3C11: Number Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from Part A . Each question carries 4 marks.

- 1. Prove that, if(a,b) = 1 and (a,c) = 1, then (a,bc) = 1.
- 2. Prove that $\varphi(n) > \frac{n}{6}$ for all n with at most 8 distinct prime factors.
- 3. If n>1 and $(n-1)!+1\equiv 0 \pmod{n}$, then prove that n is a prime.
- 4. Determine those odd primes p for which (-1/p) = 1 and for which (-1/p) = -1.
- 5. Explain the factorization problem with an example.
- 6. Express the polynomial $t_1^2 + t_2^2 + t_3^2$ in terms of elementary symmetric polynomials.

PART - B

Answer any four questions from Part B not omitting any Unit. Each question carries 16 marks.

UNIT - 1

- 7. a) State and prove the fundamental theorem of arithmetic.
 - b) Show that the infinite series $\sum_{n=1}^{\infty} \frac{1}{P_n}$ diverges.
- 8. a) If $n \ge 1$, prove that $\varphi(n) = n \prod_{p/n} (1 \frac{1}{p})$.
 - b) Assume f is multiplicative. Prove that $f^{-1}(n) = \mu(n)f(n)$ for every square free n.

- 9. a) State and prove Chinese remainder theorem.
 - b) Show that the of lattice points in the plane visible from the origin contains arbitrarily large gaps.

UNIT-2

- 10. a) State and prove Gauss' lemma.
 - b) Prove that Legendre's symbol is a completely multiplicative function.
- 11. a) If p is an odd prime and $\alpha \ge 1$, then prove that there exist odd primitive roots g modulo p^{α} and each such g is also a primitive root modulo $2p^{\alpha}$.
 - b) Given $m \ge 1$, where m is not of the form $m = 1, 2, 4, p^{\alpha}$ or $2p^{\alpha}$, where p is an odd prime. Then prove that for any a with (a, m) = 1 we have $a^{\frac{\phi(m)}{2}} \equiv 1 \pmod{m}$.
- 12. a) Explain the RSA public key algorithm with an example.
 - b) Compare Private Key and Public Key Cryptosystems.

UNIT - 3

- 13. a) Let G be a free abelian group of rank n with basis $\{x_1, x_2, \dots, x_n\}$. Suppose (a_{ij}) is an $n \times n$ matrix with integer entries. Then prove that the elements $y_i = \sum_j a_{ij} x_j$ form a basis of G if and only if (a_{ij}) is unimodular.
 - b) Let G be a free abelian group of rank r and H a subgroup of G. Then prove that $\frac{G}{H}$ is finite if and only if the ranks of G and H are equal.
- 14. a) Prove that the set A of algebraic numbers is a subfield of the complex field C.
 - b) Prove that the algebraic integers form a subring of the field of algebraic numbers.
- 15. a) Prove that the minimal polynomial of $\zeta = e^{\frac{2\pi i}{p}}$ p an odd prime, over \mathbb{Q} is $f(t) = t^{p-1} + t^{p-2} + + t + 1$ and the degree of $\mathbb{Q}(\zeta)$ is p-1.
 - b) Find integral basis and discreminant for $\mathbb{Q}(\sqrt{3})$.